
General Chemistry (CH101): Chemistry around Us

Department of Chemistry KAIST **Chapter 01** Portable Electronics: The Periodic Table in the Palm of Your Hand

Reflect

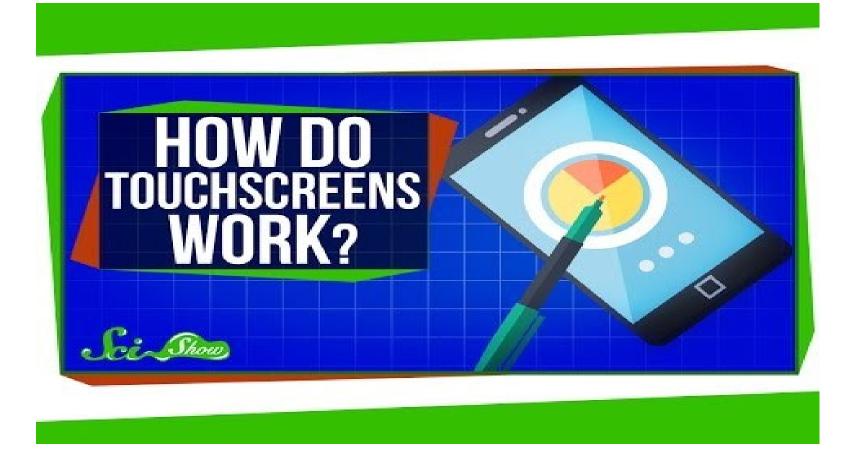

What's in Your Cell Phone?

Watch the Chapter 1 opening video to get a glimpse of how chemistry plays a central role in controlling the properties of electronic devices.

- **a.** List some desirable attributes of a cell phone, and some that you would like to see in the future.
- **b.** Cite two elements that combine to form a substance important to your cell phone.
- c. What is the expected lifespan of your cell phone?

https://www.viddler.com/embed/c8ca1594/?f=1&player=arpeggio&secret=59037080

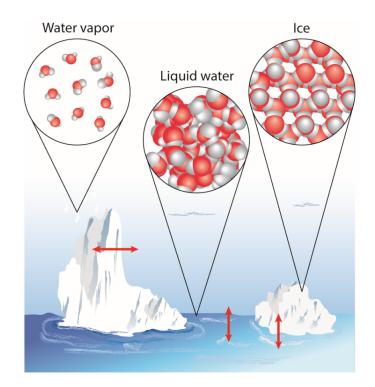
Chapter 1 Portable Electronics: The Periodic Table in the Palm of Your Hand


- What are the different components in your portable electronic device made from?
- How does the periodic table of elements guide us in the design of your device?
- What are rocks, and how do we isolate and purify metals from these natural sources?
- How is ordinary sand converted into silicon—the fundamental component of processor chips?
- How is sand converted into glass, and how can its structure be modified for crack-resistant screens?
- What are the environmental implications of fabricating and recycling your portable electronic device?

How Do Touchscreens Work?

- Electronic devices and other consumer goods rely upon **properties** that are based on the **materials** from which they are made.
- Structure and composition lead to physical and chemical properties.

Your Turn 1.1 Touchscreen Response


Taking care not to damage your screen, use a variety of materials to touch the screen of your portable electronic device. In addition to your finger, items that may be used include a paper clip, a plastic pen, a key, a battery, fabrics, pencil lead, a sponge (wet and dry), a pencil eraser, a coin, a glass marble, paper, cardboard, or any other items. Did any of these materials other than your finger cause a response?

https://youtu.be/wKuqNuzM1oM?si=UfOo4XShOSj6IWI4

What's the Matter with Materials?

- Everything around you is **matter**.
- Matter is considered to be anything that occupies space and has mass.

Properties of Matter

Check out an interactive simulation of atoms and molecules in different states:

States of Matter: Basics

Answer the following questions for solids, liquids, and gases. Provide an example to support each of your answers.

- a. Does the phase have a definite volume?
- **b.** Does the phase have a definite shape?
- **c.** Will the phase take the shape of its container?
- d. Will the phase completely fill its container?

What's the Matter with Materials? 2

Matter can be classified by phase...

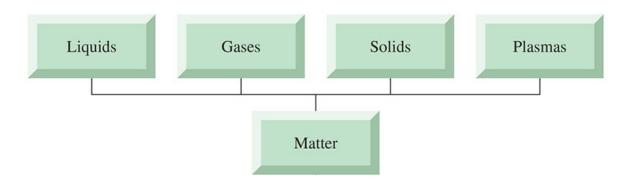
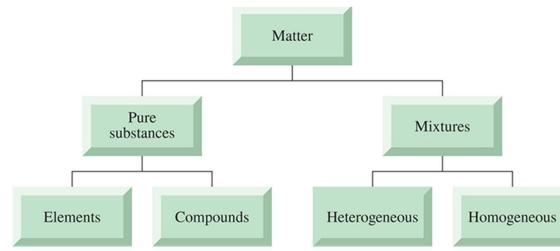



Table 1.1 Macroscopic Properties of Solids, Liquids, and Gases

Phase	Takes the shape of its container?	Completely fills its container?	Definite volume?	Definite shape?
Solid	No	No	Yes	Yes
Liquid	Yes	No	Yes	No
Gas	Yes	Yes	No	No

What's the Matter with Materials? 3

... or can be classified by *composition:*

Pure substances may be

elements (containing atoms of the same type – for instance, silicon (Si)).

compounds (containing 2 or more different types of atoms – for example, silicon dioxide (SiO_{2}))

Mixtures may be

- *Heterogeneous* (with a composition that varies throughout, such as gravel).
- *Homogeneous* (with a uniform composition throughout, such as solutions of sugar dissolved in water).

A substance that cannot be broken down into two or more simpler substances by chemical methods is called a(n):

- A. compound
- B. mixture
- C. element
- D. isotope

Which of the following substances below are considered molecules?

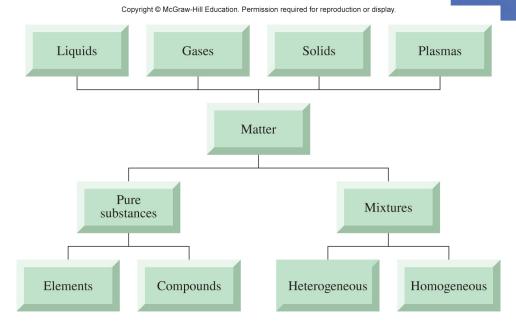
- A. AgCl B. $FeCl_3$ C. NO_2
- D. LiCl

Classifying Matter

Classify each of these as an element, a compound, or a mixture:

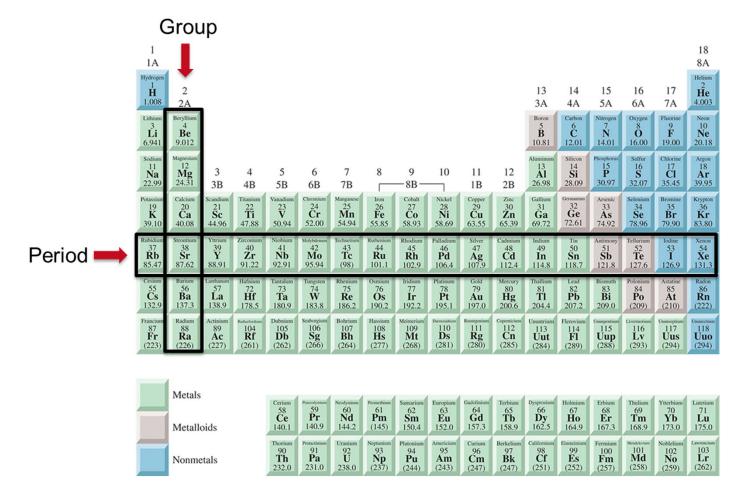
carbon dioxide	fluorine
nickel	table salt
cocaine	soap
water	sea water

What differentiates a compound from a mixture of two or more elements?


- A. The elements in a compound may be present in varying proportions.
- B. A compound does not exhibit the individual properties of the elements of which it is composed.
- C. A compound is made up of only one element.
- D. A compound cannot be made up of more than two elements.

More Practice with Classifying Matter

Your Turn 1.4 Classification of Matter


Watch a video (www.acs.org/cic) to further familiarize yourself with classifying matter. Then use the classification scheme shown in Figure 1.2 to categorize the following:

- a. Your cell phone.
- **b.** Aluminum foil.
- **c.** Red wine.
- d. Chlorine gas.
- e. Stainless steel.
- f. Table salt.
- **g.** Sugar.

The Periodic Table

Most elements are metals; the metalloids include: B, Si, Ge, As, Sb, Te, Po

Groups of the Periodic Table

Group 1: alkali metals Group 2: alkaline earth metals Group 15: pnictogens Group 16: chalcogens Group 17: halogens Group 18: Noble gases

1 1A																	18 8A
Hydrogen 1 H 1.008	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	Helium 2 He 4.003
Lithium 3 Li 6.941	Beryllium 4 Be 9.012											Boron 5 B 10.81	Carbon 6 C 12.01	Nitrogen 7 N 14.01	Oxygen 8 0 16.00	Fluorine 9 F 19.00	Neon 10 Ne 20.18
Sodium 11 Na 22.99	Magnesium 12 Mg 24.31	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	Aluminum 13 Al 26.98	Silicon 14 Si 28.09	Phosphorus 15 P 30.97	Sulfur 16 S 32.07	Chlorine 17 Cl 35.45	Argon 18 Ar 39.95
Potassium 19 K 39.10	Calcium 20 Ca 40.08	Scandium 21 Sc 44.96	Titanium 22 Ti 47.88	Vanadium 23 V 50.94	Chromium 24 Cr 52.00	Manganese 25 Mn 54.94	26 Fe 55.85	Cobalt 27 Co 58.93	Nickel 28 Ni 58.69	^{Copper} 29 Cu 63.55	Zinc 30 Zn 65.39	Gallium 31 Ga 69.72	Germanium 32 Ge 72.61	Arsenic 33 As 74.92	Selenium 34 Se 78.96	Bromine 35 Br 79.90	Krypton 36 Kr 83.80
Rubidium 37 Rb 85.47	Strontium 38 Sr 87.62	Yttrium 39 Y 88.91	Zirconium 40 Zr 91.22	Niobium 41 Nb 92.91	42 Mo 95.94	Technetium 43 Tc (98)	Ruthenium 44 Ru 101.1	Rhodium 45 Rh 102.9	Palladium 46 Pd 106.4	Silver 47 Ag 107.9	Cadmium 48 Cd 112.4	Indium 49 In 114.8	^{Tin} 50 Sn 118.7	Antimony 51 Sb 121.8	Tellurium 52 Te 127.6	lodine 53 I 126.9	Xenon 54 Xe 131.3
Cesium 55 Cs 132.9	Barium 56 Ba 137.3	Lanthanum 57 La 138.9	Hafnium 72 Hf 178.5	Tantalum 73 Ta 180.9	Tungsten 74 W 183.8	Rhenium 75 Re 186.2	Osmium 76 Os 190.2	Iridium 77 Ir 192.2	Platinum 78 Pt 195.1	Gold 79 Au 197.0	Mercury 80 Hg 200.6	Thallium 81 Tl 204.4	Lead 82 Pb 207.2	Bismuth 83 Bi 209.0	Polonium 84 Po (209)	Astatine 85 At (210)	Radon 86 Rn (222)
Francium 87 Fr (223)	Radium 88 Ra (226)	Actinium 89 Ac (227)	Ratherfordium 104 Rf (261)	Dubnium 105 Db (262)	Seaborgium 106 Sg (266)	Bohrium 107 Bh (264)	Hassium 108 HS (277)	Meitnerium 109 Mt (268)	Demiablem 110 DS (281)	Roentgenium 111 Rg (280)	Copernicism 112 Cn (285)	Ununtrium 113 Uut (284)	Flerovium 114 Fl (289)	^{Unappentian} 115 Uup (288)	Livernorium 116 LV (293)	Unanceptian 117 Uus (294)	Unnectium 118 UUO (294)
	Metals			Cerium	Pracodymium	Neodymium	Pronethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
	Metall	oids		58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm (145)	62 Sm 150.4	63 Eu 152.0	64 Gd 157.3	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0
	Nonme	etals		Thorium 90 Th 232.0	Protactinium 91 Pa 231.0	Uranium 92 U 238.0	Neptunium 93 Np (237)	Plutonium 94 Pu (244)	Americium 95 Am (243)	Curium 96 Cm (247)	Berkelium 97 Bk (247)	Californium 98 Cf (251)	Einsteinium 99 Es (252)	Fermium 100 Fm (257)	Mendelevium 101 Md (258)	Noblelium 102 No (259)	Lawrencium 103 Lr (262)

https://youtu.be/-ojcm3IIf98

The Periodic Table: Chemical Symbols

1 to 2 letter abbreviations for elements.

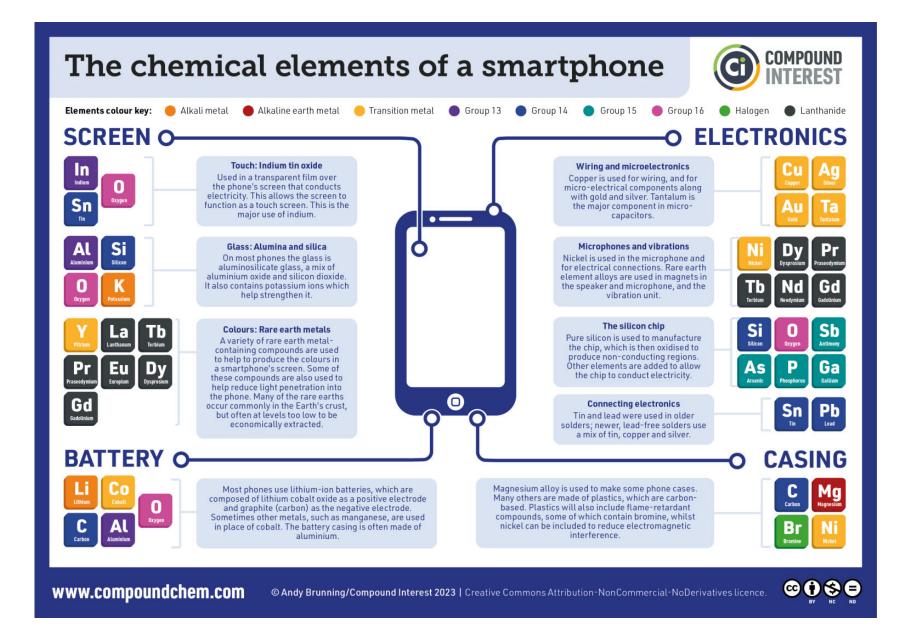
Most are straightforward (O = oxygen, Si = silicon, etc.).

Others are based on Latin or Greek names. For instance:

- Pb = lead (*plumbum* in Latin).
- Hg = mercury (hydrargyrum in Greek).
- Cu = copper (cuprum in Latin).
- Fe = iron (ferrum in Latin).
- K = potassium (kalium in Latin).
- Sb = antimony (stibium in Latin).
- Ag = silver (argentum in Latin).
- Au = gold (aurum in Latin).

https://youtu.be/-ojcm3IIf98?si=niF8zQf2Y4ebIH-R

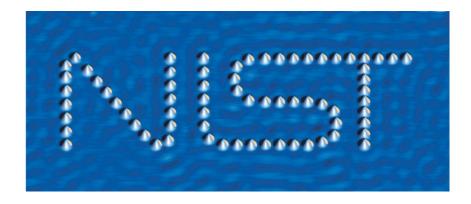
Your Turn


Your Turn 1.3 The Periodic Table Inside Your Cell Phone

- **a.** Survey the periodic table shown in Figure 1.3. Which elements do you think are found in your cell phone?
- **b.** The majority of materials that comprise your cell phone may be classified as metals, plastics, or glass. Using the Web as a resource, describe where these materials come from (both the region(s) of the world where they are produced, and the raw materials used in their fabrication).

The chemical elements of a smartphone

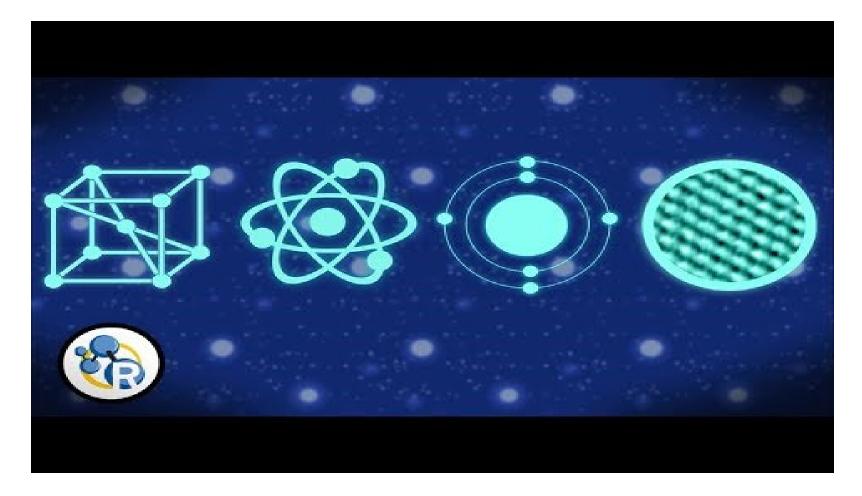
https://youtu.be/66SGcBAs04w



	FE_2O_3 VEF	ESUS FE ₃ O ₄
Fron	Fe ₂ O ₃ is iron(III) oxide, also known as hematite	Fe ₃ O ₄ is iron(II,III) oxide, also known as magnetite
	Appears as dark red or brick red solid powder	Appears as a black solid powder
	Has Fe ³⁺ oxidation state	Has both Fe ²⁺ and Fe ³⁺ oxidation states
	Molar mass is 159.687 g/mol	Molar mass is 231.531 g/mol
	Melting point is 1565°C	Melting point is 1597°C
	Decomposes at high temperature	Boiling point is 2623°C
	Paramagnetic	Ferromagnetic
	Can be attracted to a strong, external magnetic field	Can be attracted to even a weak, external magnetic field
	Alpha phase has rhombohedral structure, and gamma phase has a cubic structure	Has a cubic, inverse spinel structure
	•••••	
	Comparativley less electrical conductive	Good electrical conductor and the conductivity is about 10 ⁶ times higher
		Visit www.pediaa.con

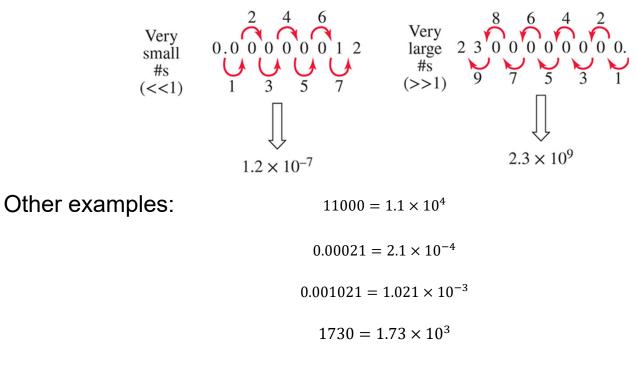
Measuring the Invisible

Elements and compounds are made up of atoms – the smallest building block that can exist as a stable, independent entity.


Atoms are extremely small – the cobalt atoms that make up the logo below are each 0.0000000014 meters in diameter!

Check out this link to see how scientists "see" atoms:

How Can You See an Atom?


Source: US National Institute of Standards and Technology.

https://youtu.be/ipzFnGRfsfE

Scientific Notation

Scientific notation makes working with very small or very large numbers easier Use powers of ten to account for zeroes in a number.

 $602,200,000,000,000,000,000 = 6.022 \times 10^{23}$

Shortcutting the Shortcut: Prefixes

- In the metric system, prefixes are used to shorten written numbers even further than scientific notation.
- Prefix symbols are used in conjunction with the base unit (for example, m, g, or A).
- For example,

 $1 \times 10^3 g$ is 1 kg and 1×10^{-6} m is 1 μm

• **Dimensional analysis** is used to convert between units:

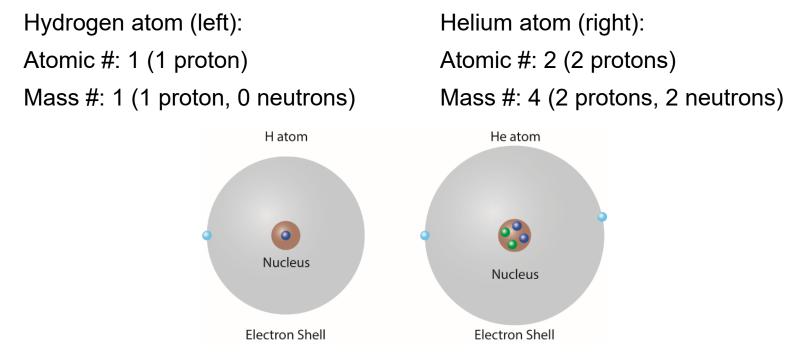
$$32 \,\mathrm{pm} \times \frac{1 \times 10^{-9} \,\mathrm{m}}{1 \,\mathrm{pm}} = 3.2 \times 10^{-8} \,\mathrm{m}$$

Table 1.2 Metric Conversions

Multiplication Factor	Prefix	Symbol				
10 ⁹	giga	G				
10 ⁶	mega	Μ				
10 ³	kilo	k				
10 ²	hecto	h				
10 ¹	deka	da				
1*	—	—				
10^{-1}	deci	d				
10^{-2}	centi	c				
10 ⁻³	milli	m				
10^{-6}	micro	μ				
10 ⁻⁹	nano	n				

What Makes Atoms Tick? Atomic Structure

- Although indivisible by chemical and physical means, atoms are composed of yet smaller pieces called **subatomic particles**.
- **Protons** and **neutrons** are found in the center of the atom, the nucleus.
- *Electrons* are located outside the nucleus.


 Table 1.3 Properties of Subatomic Particles.

Particle	Relative Charge	Relative Mass	Actual Mass, kg				
proton	+1	1	1.67×10^{-27}				
neutron	0	1	1.67×10^{-27}				
electron	-1	0*	9.11×10^{-31}				

* This value is zero when rounded to the nearest whole number. The electron does indeed have mass, though very small!

Atomic Structure

For neutral atoms, the # electrons = # protons (charges must balance).

Comparison of the atomic structures for hydrogen and helium, showing the location of protons (). Neutrons (), and electrons ().

Your Turn

Your Turn 1.8 Atomic Structure.

Determine the number of protons and electrons in each of the following atoms:

a. Ga **b.** Sn **c.** Pb **d.** Fe

Determine the number of protons, neutrons, and electrons in each of the following atoms:

- **a.** H (mass number of 2).
- **b.** Cr (mass number of 52).
- c. Al (mass number of 27).
- **d.** As (mass number of 75).

1 1A																	18 8A
Hydrogen H H 1.008	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	Helium 2 He 4.003
Lithium 3 Li 6.941	Beryllium 4 Be 9.012											Boron 5 B 10.81	Carbon 6 C 12.01	Nitrogen 7 N 14.01	Oxygen 8 0 16.00	Fluorine 9 F 19.00	Neon 10 Ne 20.18
Sodium 11 Na 22.99	Magnesium 12 Mg 24.31	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	Aluminum 13 Al 26.98	Silicon 14 Si 28.09	Phosphorus 15 P 30.97	Sulfur 16 S 32.07	Chlorine 17 Cl 35.45	Argon 18 Ar 39.95
Potassium 19 K 39.10	Calcium 20 Ca 40.08	Scandium 21 Sc 44.96	Titanium 22 Ti 47.88	Vanadium 23 V 50.94	Chromium 24 Cr 52.00	Manganese 25 Mn 54.94	^{Iron} 26 Fe 55.85	Cobalt 27 Co 58.93	Nickel 28 Ni 58.69	^{Copper} 29 Cu 63.55	Zinc 30 Zn 65.39	Gallium 31 Ga 69.72	Germanium 32 Ge 72.61	Arsenic 33 As 74.92	Selenium 34 Se 78.96	Bromine 35 Br 79.90	Krypton 36 Kr 83.80
Rubidium 37 Rb 85.47	Strontium 38 Sr 87.62	Yttrium 39 Y 88.91	Zirconium 40 Zr 91.22	Niobium 41 Nb 92.91	42 Mo 95.94	Technetium 43 Tc (98)	Ruthenium 44 Ru 101.1	Rhodium 45 Rh 102.9	Palladium 46 Pd 106.4	Silver 47 Ag 107.9	Cadmium 48 Cd 112.4	Indium 49 In 114.8	Tin 50 Sn 118.7	Antimony 51 Sb 121.8	Tellurium 52 Te 127.6	Iodine 53 I 126.9	Xenon 54 Xe 131.3
Cesium 55 Cs 132.9	Barium 56 Ba 137.3	Lanthanum 57 La 138.9	Hafnium 72 Hf 178.5	Tantalum 73 Ta 180.9	Tungsten 74 W 183.8	Rhenium 75 Re 186.2	Osmium 76 Os 190.2	Iridium 77 Ir 192.2	Platinum 78 Pt 195.1	Gold 79 Au 197.0	^{Mercury} 80 Hg 200.6	Thallium 81 Tl 204.4	Lead 82 Pb 207.2	Bismuth 83 Bi 209.0	Polonium 84 Po (209)	Astatine 85 At (210)	Radon 86 Rn (222)
Francium 87 Fr (223)	Radium 88 Ra (226)	Actinium 89 Ac (227)	Ratherfordium 104 Rf (261)	Dubnium 105 Db (262)	Seaborgium 106 Sg (266)	Bohrium 107 Bh (264)	Hassium 108 HS (277)	Meitnerium 109 Mt (268)	Derrotadium 110 DS (281)	Recentgenium 111 Rg (280)	Copernicium 112 Cn (285)	Ununtrium 113 Uut (284)	Flerovium 114 Fl (289)	Ununpentium 115 Uup (288)	Livernorium 116 LV (293)	Ununseptium 117 UUS (294)	Ununcetium 118 Uuo (294)

Metals	Cerium	Pracodymium				Europium	Gadolinium	Terbium	Dysprosium		Erbium	Thulium	Ytterbium	Lutetium
Metalloids	58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm (145)	62 Sm 150.4	63 Eu 152.0	64 Gd 157.3	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0
Nonmetals	Thorium 90 Th 232.0	Protactinium 91 Pa 231.0	Uranium 92 U 238.0	Neptunium 93 Np (237)	Plutonium 94 Pu (244)	Americium 95 Am (243)	Curium 96 Cm (247)	Berkelium 97 Bk (247)	Californium 98 Cf (251)	Einsteinium 99 Es (252)	Fermium 100 Fm (257)	Mendelevium 101 Md (258)	Noblelium 102 No (259)	Lawrencium 103 Lr (262)

A Look at the Elements in Their Natural States 1

Metals are isolated from natural rock formations.

• For example, aluminum is isolated from bauxite ore.

A 200.0 g of bauxite sample contains several minerals:

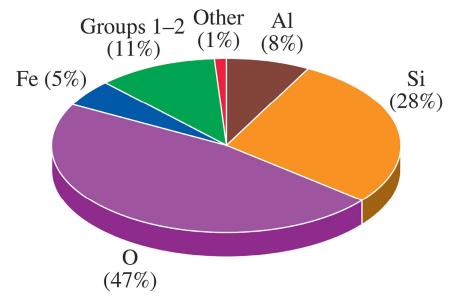
100.0 g gibbsite, 50.5 g boehmite, 49.5 g iron oxide.

As a percentage, these minerals are:

 $\frac{100.0 \text{ g gibbsite}}{200.0 \text{ g bauxite ore}} \times 100\% = 50.00\% \text{ gibbsite}$

 $\frac{50.5 \text{ g boehmite}}{200.0 \text{ g bauxite ore}} \times 100\% = 25.3\% \text{ boehmite}$

 $\frac{49.5 \text{ g iron oxide}}{200.0 \text{ g bauxite ore}} \times 100\% = 24.7\% \text{ iron oxide}$


©Doug Sherman/Geofile

A Look at the Elements in Their Natural States

Earth's crust is mostly composed of O, Si, Al, and alkali/alkaline earth metals.

- But these aren't as pure elements!
- Present as rocks or ores:

Ore	Formula						
Galena	PbS						
Chalcocite	Cu ₂ S						
Magnesite	MgCO ₃						
Cinnabar	HgS						
Sphalerite	ZnS						
Hematite	Fe ₂ O ₃						
Magnetite	Fe ₃ O ₄						
Dolomite	CaMg(CO ₃) ₂						

Chemical Change to Obtain Pure Metals

 Smelting chemically reacts metal ores with reactants such as carbon with high temperatures to produce pure metal:

 $CuO(\mathrm{s}) + C(\mathrm{s}) \to Cu(\mathrm{l}) + CO(\mathrm{g})$

- Since the chemical composition of the copper oxide is changed, this is a *chemical change*.
- If the physical state is changed without changing the composition, such as melting solid copper to liquid copper, it is a *physical change*.

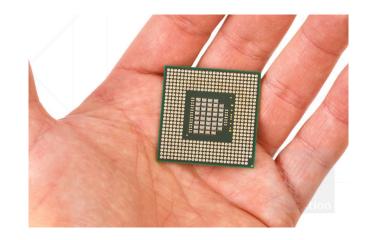
Minnesota Iron Mining Process

https://youtu.be/7foK-wVNSMw

Your Turn

Your Turn 1.10 Physical versus Chemical Change.

For each of the following, indicate whether a physical or chemical change has occurred:


- **a.** Burning a match.
- **b.** Baking a cake.
- c. Cracking a piece of glass.
- d. A piece of apple darkens after being cut.
- e. Boiling water.
- f. Rusting of iron.

From Sand to Silicon

 The processing chips in your electronic devices are made primarily of very pure silicon ... which comes from sand, SiO₂:

$$SiO_{2(s)} + 2C_{(s)} \rightarrow Si_{(s)} + CO_{(g)}$$

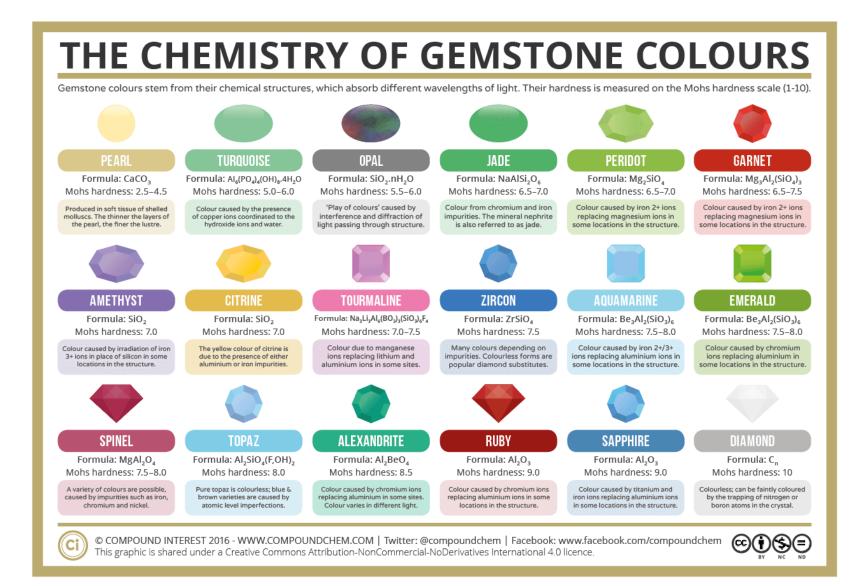
- This produces metallurgical grade silicon (95 to 98% pure).
- However, higher purity is needed for processing chips, so additional purification is needed.
- Purities of up to 99.999999999% can be achieved, or 12N!

From Sand to Silicon: the Making of a Chip

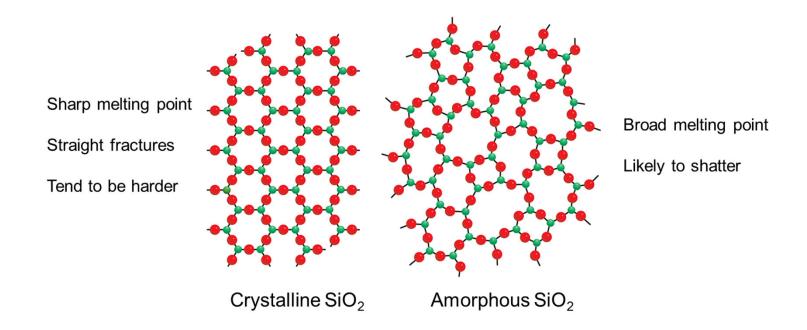
https://youtu.be/Q5paWn7bFg4?si=veXhLrpes_lwfq4r

Sand is also used as a raw material to make glass.

- S i O_x the primary component of many gemstones.
- Colored crystals are due to the presence of trace amounts of metals.



What Causes the Colour of Gemstones? Gemstones Citrine (above) and amethyst (below) both have trace amounts of iron that give them their color



©Sabrina Pintus/Getty Images; ©TinaImages/ShutterstockAlexander; ©/Shutterstock Alexander Hoffmann

Properties depend on composition and structure.

• Most glass is amorphous, but quartz is crystalline:

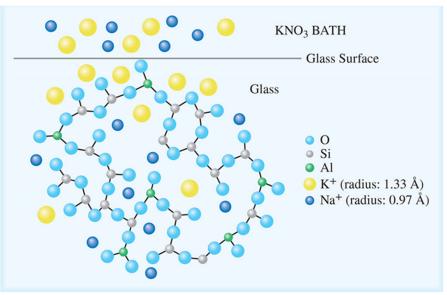
Sand is heated to temperatures in excess of 1000°C and cooled rapidly to form a disordered glass.

- Quartz sand has a very high melting point (>1300°C), so additives are used to lower the melting point, so the glass is easier to mold.
- Additives to lower the melting point such as Na₂CO₃, CaCO₃, and MgCO₃ are called *flux*.
- Other additives are used to give other properties such as color and thermal stability.
- ex) Pyrex glass contains Si, O, B, Na, Al and K.

https://www.acs.org/education/resources/undergraduate/chemistryincontext/int eractives/portable-electronics/formation-prince-ruperts-drop.html

THE CHEMISTRY OF COLOURED GLASS

Glass is coloured in 3 main ways. It can have transition or rare earth metal ions added; it can be due to colloidal particles formed in the glass; or it can be due to particles which are coloured themselves. This graphic shows some of the typical chemical elements that are used to colour glass.



Ci

To increase strength of glass, the structure of the glass is changed at the surface.

 Corning's Gorilla Glass soaks glass in molten KNO₃ bath to replace sodium ions with larger potassium ions, increasing compression at the surface.

Whereas normal glass can withstand a force of 7000 psi, Gorilla Glass can withstand >100,000 psi!

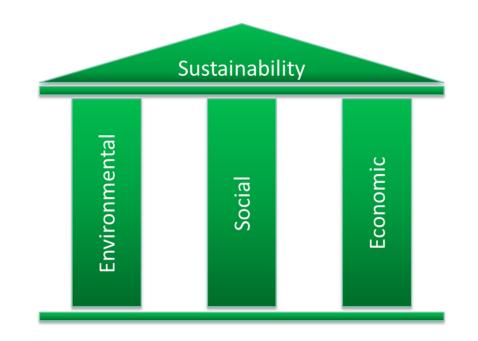
https://www.acs.org/education/resources/undergraduate/chemistryincontext/interactives/porta ble-electronics/creation-gorilla-glass.html

Apple Watch Series 9

Apple Watch Series 9

Ion-X glass

Apple Watch Hermès



Apple Watch Series 9

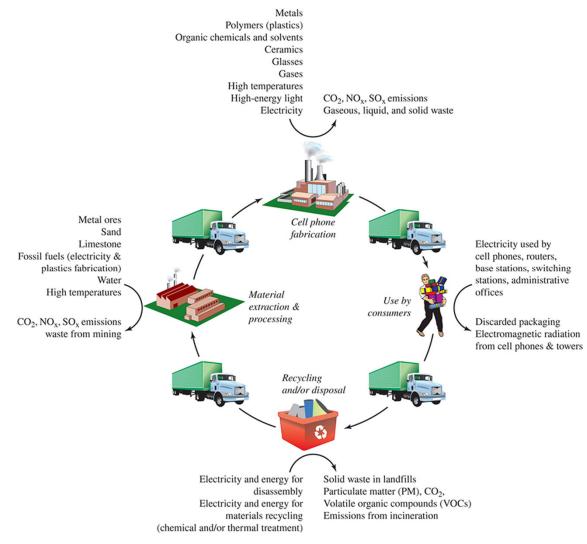
Sapphire glass

Three Pillars of Sustainability

Environmental: pollution prevention, natural resource use. Social: better quality of life for all members of society. Economic: fair distribution and efficient allocation of resources.

Cradle-to-Cradle Recycling

A sustainable life cycle for portable electronics is "cradle-to-cradle."


• End of usefulness of one product dovetails with the beginning of the life cycle for another product.

Over 90% of cell phones are sent to landfills or are collected at homes.

• Only 3% are recycled!

Cradle-to-Cradle Recycling 2

Apple has 18 final assembly facilities + >200 raw material suppliers

- Si for chips purified in Michigan, USA
- Circuit board built in CA

. . .

- Li in battery mined and purified in Chile
- Plastics synthesized in China

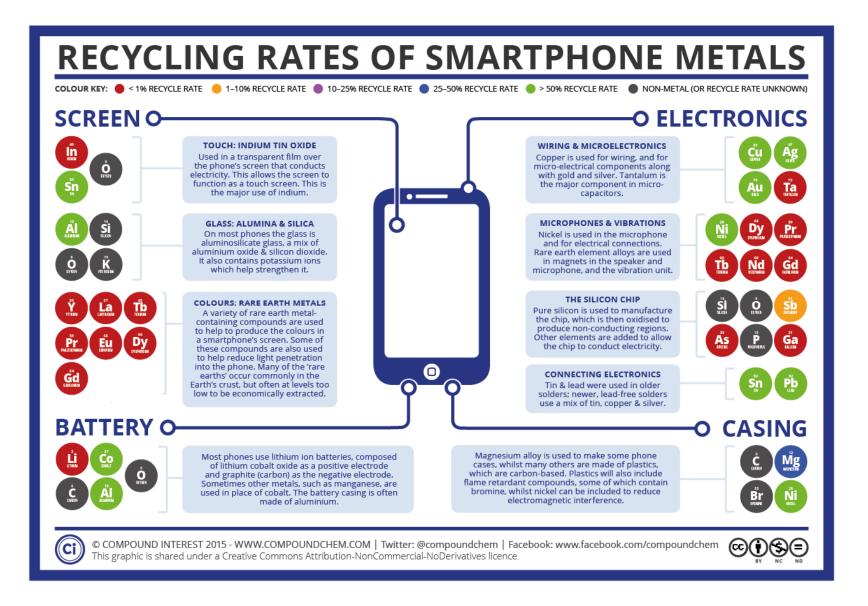
Environmental footprint

- 11-inch iPad Pro (1064 GB)
- ➔ 184 kgCO2e (kg of equivalent CO2) during its lifespan
- = 84% from manufacturing +
 11% from transportation + 5%
 from consumer use + <1%
 recycling</pre>

The Importance of Recycling

An average cell phone contains:

- 300 mg of silver.
- 30 mg of gold (30 times more concentrated than in gold ore!).


The process of recycling electronics to recover metals is referred to as *urban mining*

While much electronics recycling is done by hand, some companies are developing disassembly robots to make the process safer and more environmentally friendly.

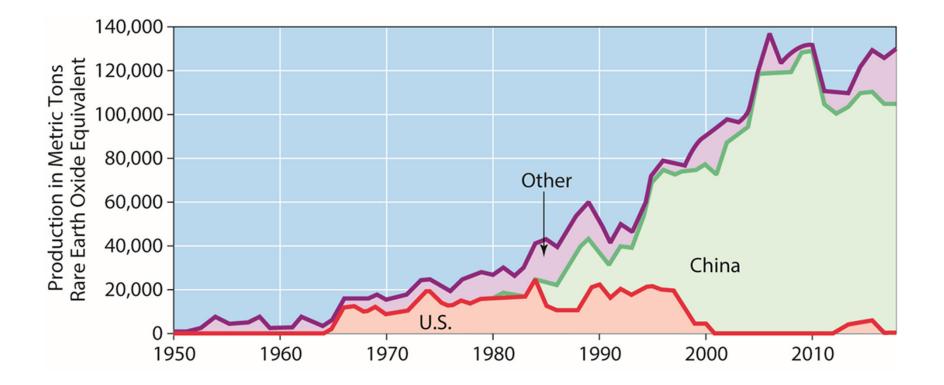
The Recycling Rates of Smartphone Metals

E.D. Torial / Alamy Stock Photo

Rare Earth Metals: A Needed Resource

Rare earth metals are used for applications such as:

- Rechargeable batteries.
- Magnets.
- Speakers.
- Memory chips.
- Fluorescent lighting.
- Catalytic converters.
- Advanced electronics.
- Advanced weaponry.


	np→1 od IA	2 IIA	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	18 VIIIA
ļ	1 H Hydrogen 1.00794																	2 He Helium 4.002602
2	3 Li 6.941	4 Be 9.012182											5 B Boron 10.811	6 C Carbon 12.0107	7 N Nitrogen 14.0067	8 O Oxygen 15.9994	9 F Fluorine 18.9954032	10 Ne Ncon 20.1797
3	11 Na Sodium 22.98976928	12 Mg Magnesium 24.3050											13 Al Aluminum 26.9815386	14 Si Silicon 28.0855	15 P Phosphorus 30.973762	16 S Sulfur 32.065	17 Cl Chlorine 35.453	18 Ar Argon 39.948
4	19 K Potassium 39.0983	20 Ca Calcium 40.078	21 Sc Scandium 44.955912	22 Ti ^{Titanium} 47.867	23 V Vanadium 50.9415	24 Cr Chromium 51.9961	25 Mn Manganese 54.938045	26 Fe Iron 55.845	27 Co Cobalt 58.933195	28 Ni ^{Nickel} 58.6934	29 Cu Copper 63.546	30 Zn Zinc 65.39	31 Ga Gallium 69.723	32 Germanium 72.61	33 As Arsenic 74.92160	34 Se Selenium 78.96	35 Br Bromine 79.904	36 Kr Krypton 83.798
5	37 Rb Rubidium 85.4678	38 Sr Strontium 87.62	39 Y Yttrium 88.90585	40 Zr Zirconium 91.224	41 Nb Niobium 92.90638	42 Mo Modybdenum 95.94	43 Tc Technetium (97.9072)	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.90550	46 Pd Palladium 106.42	47 Ag Silver 107.8682	48 Cd Cadmium 112.411	49 In Indium 114.818	50 Sn ^{Tin} 118.710	51 Sb Antimony 121.760	52 Te Tellurium 127.60	53 I Iodine 126.90447	54 Xe Xenon 131.293
6	55 Cs Cesium 132.9054519	56 Ba Barium 137.327	57–71 Lanthanides	72 Hf Hafnium 178.49	73 Ta Tantalum 180.94788	74 W Tungsten 183.84	75 Re Rhenium 186.207	76 Os Osmium 190.23	77 Ir Iridium 192.217	78 Pt Platinum 195.084	79 Au Gold 196.966569	80 Hg Mercury 200.59	81 TI Thallium 204.3833	82 Pb Lead 207.2	83 Bi Bismuth 208.98040	84 Po Polonium (209)	85 At Astatine (210)	86 Rn Radon (222)
7	87 Fr Francium (223)	88 Ra Radium (226)	89–103 Actinides	104 Rf (261)	105 Db Dubnium (262)	106 Sg Seaborgium (266)	107 Bh Bohrium (264)	108 Hs Hassium (277)	109 Mt Meitnerium (268)	110 Ds Democration (281)	111 Rg Rocargenium (280)	112 Cn Copernicium (285)	113 Uut Ununtrium (284)	114 Fl Unsequation (289)	Unappendiate (288)	116 Lv ^{Unmhecium} (293)	117 Uus Unanoceptium (294)	118 Uuo Unuscetiani (294)

Lanthanides	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	Lanthanum	Cerium	Pracedymian	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thalium	Ytterbium	Lutetium
	138.90547	140.116	140.90765	144.242	(145)	150.36	151.964	157.25	158.92535	162.500	164.93032	167.259	168.93421	173.054	174.9668
Actinides	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Noblelium	Lawrencium
	(227)	232.03806	231.03588	238.02891	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Where Are the Rare Earths?

China controls most of the world's supply of the rare earth metals.

• Over 90% comes from China who holds 50% of the world's reserves.

Your Turn 5

Your Turn 1.15 Group Activity.

Now that you have learned about how your portable device works and what it is made from, form a group to think about the impact that replacing these devices every year or two has on people and Earth.

- **a.** What are the most significant challenges that face the widespread adoption of urban mining for electronics?
- **b.** Using the Internet as a resource, find out whether we would be able to meet our rising needs for new electronic devices by urban mining practices alone.
- **c.** How does the fabrication and use of portable electronics affect air quality (the topic of our next chapter)?

Example topics that you can delve into further

1) Study more details about your smartphone materials What are their components? What elements are required? How has each element been purified and fabricated? What are the economic and environmental costs involved in each process? Which process needs to be improved? What ideas are people testing and researching? What's your idea?

2) For your future phone, what attributes are desired? Which material or component of your phone needs to be improved for them? What are researchers doing for improving those properties? Will the new techniques or materials cost more environmental footprints?